偶氮二异丁脒盐酸盐
偶氧二异丁脒盐酸盐
偶氮二异丁基脒盐酸盐
偶氮二异丁基脒二盐酸盐
2,2'-偶氮二异丁脒氢氯化物
您当前的位置:偶氮二异丁脒盐酸盐

偶氮二异丁脒盐酸盐

时间:2023-07-18  来源:化工号   作者:C8H20Cl2N6
中文名 偶氮二异丁脒盐酸盐
英文名 2,2'-azobis[2-methylpropionamidine] dihydrochloride
别名 二盐酸盐
偶氮二异丁脒盐酸盐
偶氧二异丁脒盐酸盐
偶氮二异丁基脒盐酸盐
偶氮二异丁基脒二盐酸盐
2,2'-偶氮二异丁脒氢氯化物
偶氮(2-脒基丙烷)二氢氯化物
2,2'-偶氮二异丁基脒二盐酸盐
2.2'偶氮二(2-甲基脒)二盐酸盐
2,2'-偶氮二(2-脒基丙烷)二盐酸盐
2,2'-偶氮二(2-甲基丙基脒)二盐酸盐
2,2'-偶氮(2-甲基丙基脒)•
英文别名 V50
AIBA
AAPH
2,2'-AZOBIS-(2-AMIDINOPROPANE), 2HCL
Azo two isobutyl Acetamiprid hydrochloride
2,2'-AZOBIS-(2-AMIDOPROPANE) HYDROCHLORIDE
2,2'-AZOBIS(ISOBUTYRAMIDINE) DIHYDROCHLORIDE
2,2'-AZOBIS(2-AMIDINOPROPANE) DIHYDROCHLORIDE
2,2-azobis(2-methylpropionamidine)dihydrochlorid
2,2'-Azobis(2-methylpropionamide)dihydrochloride
2,2'-azobis(2-methyl-propionamidindihydrochloride
2,2'-azobis[2-methyl-propanimidamiddihydrochloride
2,2'-azobis(2-methyl-propanimidamiddihydrochloride
2,2'-AZOBIS(2-METHYLPROPIONAMIDINE) DIHYDROCHLORIDE
2,2'-Azobis(2-Methylpropionamidine) Dihydrochloride
2,2'-azobis[2-methylpropionamidine] dihydrochloride
2-(2-amino-2-imino-1,1-dimethyl-ethyl)azo-2-methyl-propanamidine dihydrochloride
CAS 2997-92-4
EINECS 221-070-0
化学式 C8H20Cl2N6
分子量 271.19
InChI InChI=1/C8H18N6.2ClH/c1-7(2,5(9)10)13-14-8(3,4)6(11)12;;/h1-4H3,(H3,9,10)(H3,11,12);2*1H
InChIKey LXEKPEMOWBOYRF-QDBORUFSSA-N
密度 0.42
熔点 175-177°C(lit.)
沸点 336.4°C at 760 mmHg
闪点 157.3°C
水溶性 176.2g/L at 20℃
蒸汽压 0Pa at 20℃
溶解度 acetone, dioxane, methanol, ethanol, DMSO and water: soluble
存储条件 0-6°C
稳定性 Unstable. Sensitive to heat and light. Incompatible with strong oxidizing agents, strong acids.
敏感性 Sensitive to light
外观 granular
颜色 White to off-white
产品用途 合成医药、染料等化学品的中间体。引发剂,丙烯酸、乙烯基、烯丙基单体聚合引发剂。
MDL号 MFCD00142725
危险品标志 Xn - 有害物品
有害物品
风险术语 R22 - 吞食有害。
R43 - 与皮肤接触可能致敏。
R5 - 受热可能引起爆炸。
安全术语 S24 - 避免皮肤接触。
S37 - 戴适当手套。
危险品运输编号 UN 3226 4.1
WGK Germany 1
RTECS UE4575500
FLUKA BRAND F CODES 10-21
海关编号 29270000
Hazard Class 5.1
Packing Group III
参考资料 展开查看 1. 严恒,刘静静,沈正雨,张瑞,胡莹莹,谢卫红.核-壳型赤藓红分子印迹聚合物的制备及吸附性能的评价[J].分析科学学报,2017,33(06):785-789.
2. 姜国哲,全贞玉,金润浩,HONG Heedo,韩春姬.红景天和轮叶党参混合提取物戊糖乳杆菌发酵条件及抗氧化作用分析[J].食品科学,2018,39(02):124-130.
3. 刘珊珊, 敖静, 谢宁宁,等. 酪蛋白抗氧化肽的胃肠消化稳定性研究[J]. 中国食品学报, 2014, 14(002):47-54.
4. 刘珊珊, 李博. 高活性抗氧化肽的体外胃肠耐受性研究[J]. 食品科技, 2014, 039(001):1-9.
5. 霍艳姣, 王波, 郭珊珊,等. 鱼肉蛋白肽在模拟胃肠消化吸收过程中的抗氧化活性和生物利用度[J]. 食品工业科技, 2016, 37(006):174-178.
6. 陈希苗, 李美英, 许秋莉,等. 体外模拟胃肠消化中山楂多酚及抗氧化活性的变化[J]. 食品科学, 2019, 040(005):31-37.
7. 邰佳, 邹俊波, 史亚军,等. 加速氧化环境中小茴香挥发油的稳定性考察及其抗氧化剂筛选[J]. 中国实验方剂学杂志, 2019(18).
8. 王瑜,邹俊波,史亚军,张小飞,邰佳,梁玉琳,郭东艳.姜黄挥发油加速氧化稳定性考察及抗氧剂筛选[J].中药材,2019,42(11):2627-2630.
9. 张瑜. RAFT可控聚合法制备“活性”聚合物及其应用初探[D].湖北工业大学,2020.
10. Shen, Jie, et al. "Investigation of cationic soapless P (St-co-DMAEMA) latex and its electrostatic adsorption of laponite." Chinese Journal of Polymer Science 34.10 (2016): 1240-1250.
11. [IF=6.475] Ying Wu et al."Comparison and screening of bioactive phenolic compounds in different blueberry cultivars: Evaluation of anti-oxidation and α-glucosidase inhibition effect."Food Res Int. 2017 Oct;100:312
12. [IF=3.603] Shen Jie et al."Investigation of cationic soapless P(St-co-DMAEMA) latex and its electrostatic adsorption of laponite."Chinese J Polym Sci. 2016 Oct;34(10):1240-1250
13. [IF=9.381] Fanke Zeng et al."Structural characterization of polysaccharides with potential antioxidant and immunomodulatory activities from Chinese water chestnut peels."Carbohyd Polym. 2020 Oct;246:116551
14. [IF=7.514] Yongfang Ren et al."Antioxidant activity, stability, in vitro digestion and cytotoxicity of two dietary polyphenols co-loaded by β-lactoglobulin."Food Chem. 2022 Mar;371:131385
15. [IF=6.953] Zhou Dong et al."Purification and comparative study of bioactivities of a natural selenized polysaccharide from Ganoderma Lucidum mycelia."Int J Biol Macromol. 2021 Nov;190:101
16. [IF=5.279] Yun-Feng Zheng et al."Comprehensive Comparison of Two Color Varieties of Perillae Folium Using Rapid Resolution Liquid Chromatography Coupled with Quadruple-Time-of-Flight Mass Spectrometry (RRLC-Q/TOF-MS)-Based Metabolic Profile and in Vivo/in Vitro Anti
17. [IF=4.952] Yingjie Bao et al."Comparison of lipid radical scavenging capacity of spice extract in situ in roast beef with DPPH and peroxy radical scavenging capacities in vitro models."Lwt Food Sci Technol. 2020 Aug;130:109626
18. [IF=4.411] Xia Niu et al."Novel IMB16-4 Compound Loaded into Silica Nanoparticles Exhibits Enhanced Oral Bioavailability and Increased Anti-Liver Fibrosis In Vitro."Molecules. 2021 Jan;26(6):1545
19. [IF=3.125] Lingxiao Li et al."Thiol functionalized polymer submicron particles prepared by soap-free emulsion polymerization and their adsorption of lead ions in water."J Appl Polym Sci. 2020 Nov;137(43):49312
20. [IF=4.451] Yongfang Ren et al."Functional improvement of (−)-epicatechin gallate and piceatannol through combined binding to β-lactoglobulin: Enhanced effect of heat treatment and nanoencapsulation."Journal of Functional Foods. 2022 Jul;94:105120
来顶一下
返回首页
返回首页
推荐资讯
热门点击